

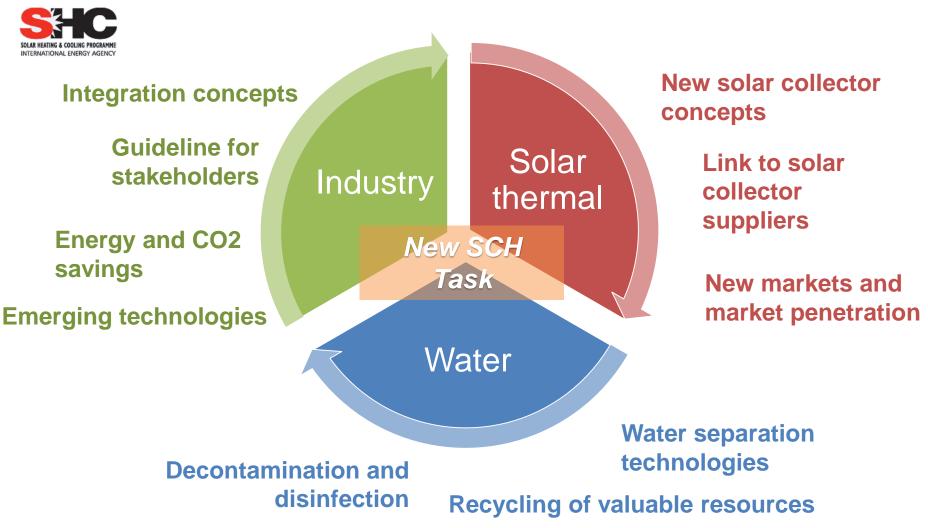
Solar energy in industrial water and wastewater management

83rd ExCo MEETING of IEA SHC Sweden

DI Christoph Brunner

AEE - Institute for Sustainable Technologies (AEE INTEC) 8200 Gleisdorf, Feldgasse 19, AUSTRIA

Background


- Industry is the second-largest water consuming sector (after agriculture) (OECD, IEA, 2016)
- Almost 10% of global water withdrawals in 2014 were for industry (OECD, IEA, 2016)
- Water is used in industry for processing, but also for fabricating and washing
- Most of it becomes waste water after being used in the production process

Source: EIP Water, 2013

Solar energy – water – industry NEXUS

Purpose of the Task

- To improve the conditions and increase the applications of solar driven separation and water purification technologies in industrial applications in order
 - to push the solar water treatment market,
 - solve water problems at locations with abundant solar energy resources and
 - reduce the fossil-fuel consumption
- Reduce the water and energy demand (CO₂ emissions) in industry (process water) and water purification plants (communal and industrial)
- For solar turn key provider, water technology sector (e.g. membrane producer,...), engineering companies and producing industry

Scope of the Task

Solar Thermal

Solar photons

Membrane distillation, Pervaporation, Vacuum evaporation, Rectification, Humidification-Dehumidification,...

Photoctalytic Water Decontamination and Disinfection Systems

- Link between industrial separation demand, technologies and exergy heat sources
- new solar thermal collectors' concepts for industrial water treatment
- Technological, economic and political barriers for up-scaling systems and technologies

Subtasks

- Subtask A: Thermally driven water separation technologies and recovery of valuable resources (Germany F-ISE)
- Subtask B: Solar Water Decontamination and Disinfection Systems (Spain CIEMAT)
- Subtask C: System integration and decision support for end user needs (Australia – Victoria University)

Source: AEE INTEC

SUBTASK A

Thermally driven water separation technologies and recovery of valuable resources

(Lead: Germany, Joachim Koschikowski, F-ISE)

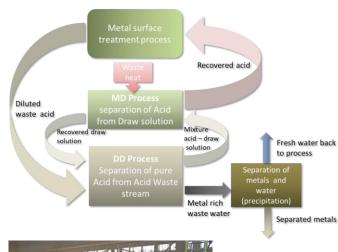
Subtask A - Core Activities

- Identification of separation technologies with high potential for solar thermal heat supply e.g.:
 - Membrane distillation, Pervaporation, Vacuum evaporation, Rectification, Humidification-Dehumidification, Collector integrated systems
- Identification of suitable fields of application (industrial sectors, processes, geographical sites...)
- Assessment of pro and cons of these technologies for different industrial applications and boundary conditions and comparison with state of the art technologies

Source: Fraunhofer

Subtask A - Results

- Matrix of different industrial separation demands to be subjected to cutting edge thermal technologies versus availability of different low exergy heat sources (D.A1)
- Specification of System design and key performance indicators as basis for comparative simulation studies (D.A3)
- Comparative simulation calculations (D.A4)
- New solar thermal collectors' concepts/for industrial water treatment. Link to Subtask B (D.A5)
- Technical and economic studies (D.A6)
- Future R&D demand (*D.A2*)

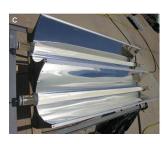

Subtask A – **Example**

- H2020 project ReWaCEM
- The project aims at reducing water use, wastewater production, energy use, valuable metal resource recovery in the metal plating, galvanizing and printed circuit board industry
- Recovery of hydrochloric acid (HCl), sulphuric acid (H2SO4), and mixed acid (HNO3-HF) by a combination of DD and MD
- and recovery of Gold and Palladium in printed circuit board industry by MD

SUBTASK B

Solar Water Decontamination and Disinfection Systems

(Lead: Spain, Isabel Oller, CIEMAT)



Subtask B - Core Activities

- Comprehensive description of the state-of-the-art and potential applications of solar water decontamination and disinfection systems in industrial water management
- Membrane solar photocatalytic systems for industrial wastewater treatment and reuse.
- Design of new solar collectors for industrial wastewater decontamination and disinfection for reusing purposes
- Integration of water decontamination and disinfection technologies driven with solar energy with membrane separation technologies for recovery of nutrients and products/wastes with added value.

Subtask B – Results

- Potential applications on new sectors for industrial water decontamination and disinfection (real and research cases) (D.B1)
- New solar collectors' concepts for hydrogen production and industrial water decontamination and disinfection. Link to Subtask A (D.B2)
- Roadmap for technology implementation for defined applications and industries (D.B3)
- Technological, economic and political barriers for up-scaling new decontamination and disinfection systems (D.B4)
- Report on legal thresholds for accomplishing water quality required depending on the final application (D.B5)

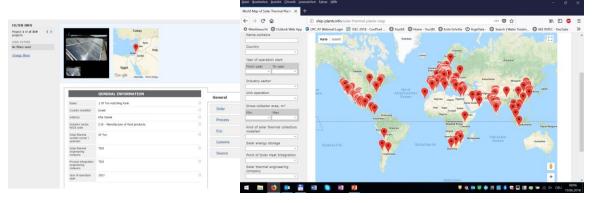
Subtask B – **Examples from PSA**

- Water disinfection solar systems
- Solar photocatalytic generation of hydrogen (decarbonisation systems)

SUBTASK C

System integrations and decision support for end user needs

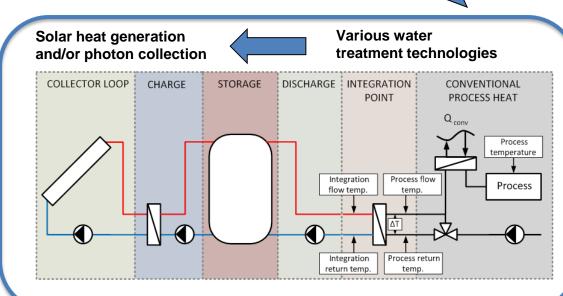
(Lead: Australia, Mikel Duke, Victoria University)


Subtask C - Main activities

- System integrations concepts of solar thermal energy separation technologies – development of decision support guidelines for technology end users
- Role of SHIP and water separation in combination with other technologies/energy sources (e.g. reverse osmosis, heat pumps, fossil fuel, biomass, biogas, PV, excess heat)

Development of additional sector in <u>SHIP Database</u> of realized installations

Subtask C - Results



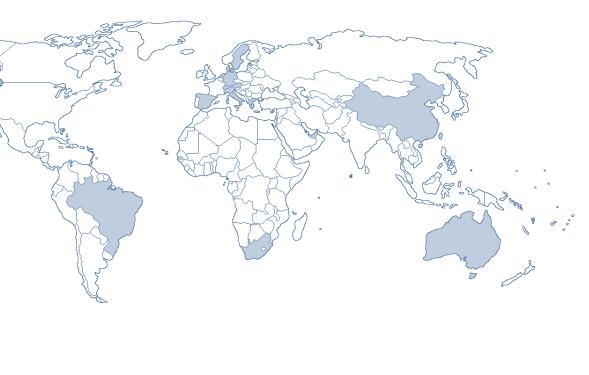
- Report on how water-energy nexus concept is actually being applied in the industry (D.C1)
- Decision making framework/guidelines for stakeholders (D.C4)
 - Generic integration concept:

Boundary conditions:

- Solar radiation
- Space requirements
- Funding opportunities
- Existing treatment system

Industry requirements:

Specific Water problem energy management


- Time to market
 - economics
 - Reliability

Contributors and Interest from 15 countries

- 1. Australia
- 2. Austria
- 3. Brazil
- 4. China
- 5. Cyprus
- 6. Denmark
- 7. Germany
- 8. Greece
- 9. Italy
- 10. Netherlands
- 11. South Africa
- 12. Spain
- 13. Sweden
- 14. Sitzerland
- 15. UAE

Australia

- Activated Logic
- Australian PV Institute Limited
- Commonwealth Scientific and Industrial Research Organization (CSIRO)
- Future Industries Institute
- James Cook University
- Macquarie University
- Monash University
- NEP Solar Pty Ltd
- Pinches Consolidated Industries
- Queensland University of Technology
- SunSpin Pty Ltd
- Sustainable Energy Transformation Pty Ltd
- University of New South Wales
- University of South Australia
- University of Technology Sydney

· Austria

- Johannes Kepler University Linz
- S.O.L.I.D. Gesellschaft für Solarinstallation und Design mbH

Brazil

- Universidad Federal de Uberlândia
- Universidade Federal do Oeste da Bahia

China

- Jiangsu Product Quality Testing & Inspection Institute
- YUBO Shandong Yuanbeo Environmental Protection Equipments Co. Ltd.

Cyprus

GAIA-Laboratory of Environmental Engineering, University of Cyprus

Denmark

Acron-Sunmark GmbH

Germany

- BFI
- EvCon, Germany
- Industrial Solar GmbH
- SolarSpring
- Technical University of Berlin
- Technical University of Bremen
- University of Hannover
- University of Kassel

Greece

- Centre for Research and Technology Heilas-CERTH
- Centre for Renewable Energy Sources and Saving; Solar Thermal Department
- Middle East Technical University

Italy

- CNR-ITM
- CNR-INO
- ENEA
- University of Salerno
- University of Palermo
- Università degli Studi di Firenze; Dipartimento di Ingegneria Industriale

Netherlands

- Aquastil
- SolarDew International

South Africa

- North-West University, Potchefstroom, South Africa (Dave Rodgers, Janvan Ravensvaai)
- SolarEnergy

Sweden

Absolicon Solar Collector AB

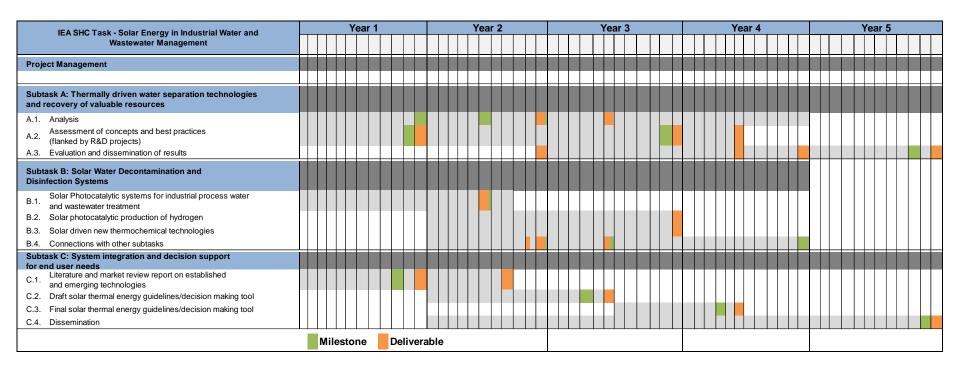
Spain

- ACCIONA (Water/Energy)
- APRIA SYSTEMS (Consistent, comprehensive and operational solutions for the Chemical Industry)
- CIESOL-Universidad de Almería
- ECOSYSTEM Environmental Servicies S.A
- GAIKER-IK4
- IMDEA Water
- Universidad Autónoma Barcelona
- University of Barcelona
- Universidad Politécnica de Valencia. Campus Alcoy
- Universidad Rey Juan Carlos, Madrid

Switzerland

- École Polytechnique Fédérale de Lausanne
- SPF Institut f
 ür Solartechnik

United Arab Emirates


Masdar Institute

Time schedule

■ Foreseen start / end: October 2018 – September 2022

Joint cooperation with SolarPaces

- Contact with Christoph Richter (Chair of Solar Paces)
- Diego Alarcon from Ciemat and Annex 6 coordinator will be the contact person
- Presentation of the Task at the next SolarPaces ExCo meeting in Granada (September 2011) Diego Alarcon
- Decision of cooperation: "maximum level of collaboration"
- After approval of Workplan by SHC ExCo delivering to SolarPaces ExCo Chair (Christoph Richter)

Task Definition Meetings and Webinar

1st Task Definition Meeting

held on 18 September 2017 in Gleisdorf, Austria

2nd Task Defintion Meeting

held on 7 February 2018 in Frankfurt, Germany

Webinar

- Held on 9 May 2018 via Webex
- Awareness raising and partner acquisition
- Promoted on IEA SHC Website
- https://www.iea-shc.org/event?EventID=6120

Kick off Meeting

 planned on 2nd and 3rd of October 2018 in Graz before <u>ISEC</u> conference

Thank you for your Attention

Scope of the Task

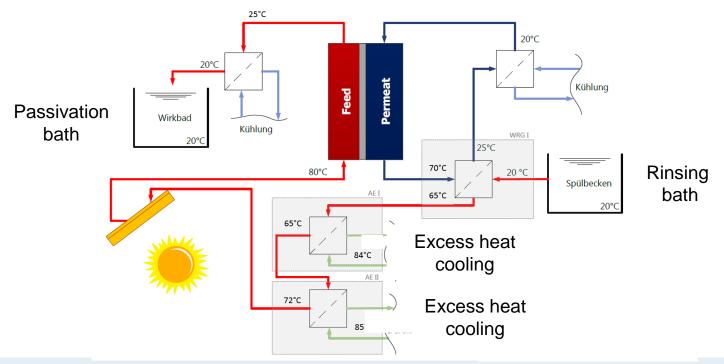
The scope of work covers all **low temperature solar radiation technologies** supplying either

- thermal or photon primary energy
- for fluid separation and water treatment
- in regard to industrial applications and sewage plants

Source: REWACEM

Subtask A - **Main Objectives**

- Fostering the development and promotion of new energy efficient solar driven separation technologies for industrial waste water and process fluid treatment
- Supporting the development of environmentally and economically sound solutions for the recovery of valuable resources from waste water streams
- Contributing to a clean and environmentally friendly circular economy in process industry



Subtask C - Results

- Report on how water-energy nexus concept is actually being applied in the industry (D.C1)
- Decision making framework/guidelines for stakeholders (D.C4)
 - Example from national project GALVANO-MD:

Subtask A: Thermally driven low temperature water ration technologies and recovery of valuable

resources

The preparation of the task is currently financed by ISE in kind funds

- For the financing of the sub task lead we will allocate 2 to 3 person months per year in a new project proposal which is currently in preparation. The scope of the project will be "Green PV production" aiming at a zero emission fabrication of solar cells. Water and process fluid recycling will be a important part of the proposal as well as energy supply by PV and solar thermal. The proposal will be submitted to PTJ / BMWI by autumn 2018
- It is anticipated that project partners will also join the TASK 49

Subtask A: Thermally driven low temperature water as a ration technologies and recovery of valuable

resources

Iternational Partners

Academia

- Technical University of Berlin (GE)
- Technical university of Bremen (GE)
- BFI
- Ciemat (SP)
- AEE Intec (AT)
- CNR-ITM (IT)
- Masdar Institute (UAE)
- Victoria University (AU)

- Industry
 - EvCon (GE)
 - SolarSpring (GE)
 - Aquastil (NL)
 - ...
 - H2O
 - GEA

Funding - Subtask B

- No special national funding coming from the Spanish Government for this activity in IEA
- Partners involved in Subtask B arranged to use own funding coming from projects (specially national) closely related to the activities of the new IEA SHC task
- Estimated funding per active partner for Subtask B: 3,000 € per year for 4 years
- Related projects at national and European level
 - INSHIP (H2020-LCE-2016-2017)
 - RATOCAT (M-ERA.NET, 2017-2019)

Funding – **Subtask C**

- Funding approved from Australian Renewable Energy Agency (ARENA)
- Lead organization: Australian Photovoltaic Institute (APVI)
- Small funding for Subtask C: \$8,000 per year for 4 years
- Plan to compile technologies with examples from various partners for end user application
- Funding approved: first meeting held. Currently in contracting stage.