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ABSTRACT

This paper discusses the development of a control-
oriented simplified modelling strategy (COSMOS)
for model-based predictive control (MPC) in
buildings. In MPC, a model of the system is used
along with forecast information for optimal planning.
A model that is as simple as possible —but accurate
enough for the purpose at hand- facilitates the
implementation of an MPC strategy. This paper
discusses desirable features of models intended for
the specific needs of advanced control applications.
A path for the creation of such models is presented,
based on low-order resistance-capacitance (RC)
thermal networks and their equivalent state-space
formulation; such an approach provides physical
insight while facilitating the treatment of the
problem. The model parameters are found by
applying an optimization to match the output of a
building simulation model. Results include an
assessment of the uncertainty of the model outputs.

INTRODUCTION

In most buildings, the operation of mechanical and
electrical systems is continuously adjusted in
response to weather variations and the demands and
behaviour of the building occupants. In this
“reactive” approach, little or no planning takes place.
However, this prevalent control paradigm is expected
to evolve in the near future, given that factors such as
the integration of renewable energy, real-time pricing
and electric vehicles will require a flexible and
dynamic interaction between buildings and the grid.
On-site renewables (e.g., BIPV), energy storage and
advanced controls will enable a better temporal
match between energy supply and demand, thus
reducing the cost associated with peak demand
charges or real-time pricing profiles. To provide a
closer link between the Smart Grid and Smart
Buildings, a new approach to controls is needed.

With a reasonably accurate forecast of future weather
and occupancy conditions, building models can be
used to calculate building energy needs over a
prediction horizon of up to a few days. This
knowledge can then be used to decide on the optimal
allocation of resources over time. A control approach
using formal optimization algorithms to choose an
optimal operation sequence based on a system model

and forecast data (Figure 1) is called model-based
predictive control, or MPC (Camacho and Bordons,
2004). MPC has successfully been used for decades
in process control and chemical engineering (Qin and
Badgwell, 2003).
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Figure 1. Model-based predictive control
(Candanedo et al., 2013) .

Despite numerous research efforts on the application
of MPC and other advanced control techniques in
buildings, there is still a large gap between the
potential of these techniques on one hand, and
current control practices on the other hand (Cigler et
al., 2012). This is due to multiple factors: among
others, the lack of tools to easily incorporate weather
forecasts into building automation systems; the
scarcity of user-friendly software to test and develop
control strategies in buildings; and the limited
familiarity of building professionals with control
engineering methods. Unlike other industries in
which controls must work flawlessly at all times (e.g.
aerospace), buildings are relatively more resilient to
control faults. Although conventional control may
not be up the task of managing a dynamic
buildings/grid interaction, it is robust, inexpensive,
easy to implement and often sufficient for
maintaining comfort. Nevertheless, new realities will
require advanced control strategies.

This paper discusses desirable features of appropriate
models for advanced control in buildings, and
proposes a method for their development by using
building performance simulation as the starting point.

CONTROL-ORIENTED MODELLING

Mathematical models are, primarily, problem-solving
tools that may have many different objectives:
feasibility studies, design, comfort assessment,
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optimization, development of controls, or simply
better understanding of the system under study.
Accordingly, modelling should be tailored to suit the
needs of a given application. The approach proposed
for a control-oriented simplified modelling strategy
(COSMOS) is based on these guiding principles:

e Preference towards
meaningful models.

e Selection of modelling resolution considering
objectives, controllable variables, and time
constants involved.

e Parameters chosen to improve predictions for
control-appropriate time-scales (minutes-days).

o Adjustment of model parameters in real time.

e Rapid generation of control-oriented models,
often with limited information.

e Facilitation of automatic formulation of optimal
control problems.

¢ Quantitative assessment of output uncertainty.

e Allowance for stochastic representations of
inputs (e.g., weather, occupancy, etc.).

e Common language for communication between
building specialists and control engineers.

simple and physically

Some Advantages of Simplified Models

Models with fewer parameters facilitate setting-up
initial conditions, a key consideration in controls. In
simulations intended for design, a long “warming up
period” is applied; furthermore, when the main goal
is the calculation of annual energy use, initial
conditions are relatively secondary. In contrast, since
a control-oriented model is intended to predict the
system response over a short term (e.g., hours),
precisely knowing the “starting point” precisely is
important. In an actual control installation, sensor
measurements (e.g., temperatures) can be used to
easily set the initial states of a simplified model at the
beginning of each prediction horizon.

In the case of linear models, a straightforward
biunivocal correspondence can be established
between a set-point profile and a cooling/heating
curve. Simpler models facilitate code debugging and
interpretation of results. They also reduce the number
of calculations required by optimization algorithms.

As discussed below, simplified models have been
applied before to the study of advanced building
controls. However, a systematic methodology to
generate simplified models for control applications is
still needed.

LITERATURE REVIEW
Building Modelling for Optimal Control

Optimal control for buildings has been investigated at
least since the 1980s. It has often been based on
simplified models. Nizet et al. (1984) described an
optimal control strategy for air conditioning based on
a simple thermal network and its equivalent state-
space representation. Approaches based on simplified

linear models were followed by Paassen (1988) and
Vinot (1989). Braun (1990) proposed an optimal
control strategy for cooling, taking advantage of the
building thermal mass; Braun used a comprehensive
room transfer function to model the building, as
developed by Seem et al. (1989). Also, typical load
profiles have been used in optimal control for cooling
systems with ice storage (Henze et al., 1997).

Simple RC Networks and Other Linear Models

Bénard et al. (1992) used system identification
techniques to create low-order RC models. Kummert
et al. (1996) proposed the use of simplified RC
thermal networks for solar buildings. Madsen and
Holst (1995) proposed a second-order RC circuit and
a state-space representation for a residential building.
Antonopoulos and Koronaki (1998) investigated the
concept of effective thermal capacitance, a useful
notion for simplified modelling. Gouda et al. (2002)
investigated how to reduce the order of complex RC
networks by applying optimization algorithms.
Fraisse et al. (2002) investigated simple RC circuits
for wall models. Wang and Xu (2006) studied the
identification of a simple RC network for a
commercial building. Recently, Bacher and Madsen
(2011) investigated an iterative method for the
determination of RC models.

Although not specifically focused on control
applications, Jiménez et al. (2008) investigated the
system identification of time-series models and
building parameters. Other studies on simplified
models include Mustafaraj et al. (2009), and Berthou
et al. (2012). A review on simplified building
models, not necessarily control-oriented ones, was
recently published (Kramer et al., 2012).

Recent Studies on MPC for buildings

Over the last decade, numerous studies have
investigated MPC for small and mid-size buildings
by using linear models in any of their different
formulations: state-space models (Kummert et al.,
2001, Kim and Braun, 2012); simple RC networks
(Gyalistras and OptiControl Team, 2010, Lee and
Braun, 2004, Verhelst et al., 2011); time-series
(Freire et al., 2008, Donaisky et al., 2007, Morosan et
al., 2010); or continuous or discrete transfer functions
(Candanedo and Athienitis, 2010).

In recent years, the control engineering community
has shown significant interest on MPC for buildings,
e.g. Oldewurtel et al. (2012), Ma et al. (2010),
Nghiem and Pappas (2011), Siroky et al. (2011), and
Balan et al. (2011), among many others.

The direct linking of building simulation and control
software (co-simulation) has been proposed for MPC
in buildings (Wetter and Haves, 2008, Nghiem, 2010,
Hoes et al., 2012). Other studies have pointed out the
importance of modelling for predictive control, and
the use of simplified models as a viable alternative
(Privara et al., 2012, Kim and Braun, 2012).
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METHODOLOGY

The procedure presented here for the creation of
control-oriented models is based on the assumption
that the building behaves mainly as complex linear
network that may be approximated with a simpler
linear one (Bacher and Madsen, 2011). The
methodology consists of the following steps:

a. A detailed model is created with a building
simulation tool (e.g., EnergyPlus).

b. A simplified model is proposed, in which the
building response depends on a few key input
variables with significant impact.

c. Virtual experiments are used to study the effect
of these inputs on the building.

d. With the resulting input and output vectors,
system identification techniques are used to find
the parameters of a proposed RC structure.

e. The RC circuit model is written in a standardized
state-space formulation. The temperatures of the
nodes with capacitances are selected as the state
variables to facilitate physical interpretation.

f. The simplified model predictions are compared
with those of EnergyPlus. The uncertainty of the
simplified model predictions is then assessed.

g. The simplified model is validated by comparing
its predictions with the results of EnergyPlus
with a different weather file.

a. Building Simulation Model

Figure 2 shows the building model used for system
identification. This 800-m” building is simulated in
EnergyPlus with five zones (central, north, east, west
and south). Similar models are commonly used in
building simulation studies, including recently on
modelling for controls (Radecki and Hencey, 2012).
The insulation, schedules and other features of the
building correspond to typical office buildings.

Figure 2. E+ model used for system identification.

b. Input and Output Variables

In the present study, the selected outputs are the
average operative temperature of the perimetral
zones (Topper) and the operative temperature of the
central zone (7,pcent). The chosen inputs are: solar
gains (gsg), sensible internal gains (g;g), outdoor
temperature (7., heating power (g,) and sensible
cooling power (g.). For the zone models, the mean
temperature of adjacent zones (7,q;;) is also used.
Cooling power is not considered in the current paper.
Figure 3 shows the input and output variables used.

s —»
—» T
%o —» Building opper
T, Model > T
op,cent
qn —

Figure 3. Inputs and output for the building model.

Evidently, other factors have an impact on the indoor
temperature: e.g., infrared heat loss to the sky,
ground temperature, solar radiation on exterior
surfaces and wind speed. They are not used as inputs
since they are either (a) strongly correlated with other
variables; (b) can be easily accounted for, if required,
as a temperature offset (the case of ground
temperature); (c) or can be included as part of the
noise. Furthermore, choosing a few relevant and
easily measurable variables, while quantifying
uncertainty, makes the model more flexible and
practical for control applications.

c. Virtual Experiments

The model created with EnergyPlus can be used to
run “virtual experiments” that provide significant
insight on the thermal dynamics of the building and
the effect of the input variables.

While it is possible to study the building response
with several inputs acting simultaneously, it is useful
to consider the independent effect of each input. This
can easily be done in a simulation tool by “turning
off” other inputs. For example, to determine the
effect due to solar gains, the temperature in the
weather file is set to a constant 0 °C, internal heat
gains are set to zero and the HVAC equipment is
turned off. After running the EnergyPlus simulation,
the results become available as vectors of inputs and
outputs. Figure 4 shows a plot of the input (solar
gains) and outputs of interest: (i) the average of the
operative temperatures in the perimeter zones (7op per)
and (ii) the operative temperature of the central zone
(Top,cent)- The effect of several inputs can be obtained
by superposition.
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Figure 4. Solar gains forcing function (input) and
corresponding response (output).

In this study, the operative temperature response of
the building under free floating conditions (without
heating) is used as the main criterion for system
identification.
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d. System Identification

Once the vectors of inputs and output values are
collected, a system identification procedure is
applied. A third-order thermal network structure is
proposed (Figure 5). Although a data-driven set of
transfer functions or a “black-box” state-space model
would be sufficient for the mathematical operations
used in controls, RC circuits facilitate the physical
interpretation of the results. Nevertheless, one must
keep in mind that rather than “exact” parameters, the
R and C values may be considered “equivalent” or
“effective” numbers.

RZ,ext
2 Rs 3
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+ +
— © p— e
= S S
C2 s | © C3 I
[=} (=}

Figure 5. Equivalent RC network, whole building.

In Figure 5, C; stands for the equivalent thermal
capacitance of the building envelope, C, represents
the equivalent thermal capacitances of the perimetral
zones, and C; is the equivalent thermal capacitance
of the central zone. 7, and T; respectively represent
the operative temperatures of the perimetral and
central zones. Solar gains are received by the
perimetral zones (node 2). Node 2 also receives 60%
of the internal gains and heating power, while 40% is
received by node 3. These percentages are an
approximation based on the zone floor area; other
splits are possible. The outdoor temperature is
connected to the lumped capacitance of the building
envelope (node 1) through R, ¢ it is also connected
to node 2 through elements with negligible thermal
mass (windows, doors) and the effect of infiltration,
both represented with R .. The equivalent thermal
resistances between nodes are R;, and R, ;.

The circuit in Figure 5 should not be understood as a
perfect representation of first principles, but as a
compromise between simplicity and the preservation
of physical sense. More details could be added to the
model depending on the needs of the user.

Let the “measured” outputs from EnergyPlus be y;
(operative temperature of node 2) and y, (operative
temperature of node 3), where the bold font indicates
a vector of values. The outputs of the RC circuit are
represented with a circumflex accent (A). To find the
RC parameters, the outputs of the simplified RC
circuit and the EnergyPlus models are compared.
Considering g output variables, the objective function
is defined in this paper as:

Sy yed) = S -5l = e |
i=1 i=1

where the vertical bars represent the Euclidean or 2™
norm operator. The Euclidean norm of a vector x
with M elements is defined as:

I = A + %+, = \/fo. )

J

In this case, in which only two outputs are taken into
account (73 and T3), the objective function is:

J(¥15915¥2552) =T - T + |1 - 1|

=[ler 1+l

The objective function of equation (3) may be
modified to emphasize the fitting at specific times of
the year, to attribute more weight to some inputs, or
to account for the response at specific frequencies
(e.g. daily cycles or steady state). The resulting
optimization problem may be solved by any suitable
method. In this case, a commercial software package,
MATLAB Optimization Toolbox™, was used
(Mathworks, 2012).

3)

e. Canonical State-Space Representation

State-space representations, which describe systems
of linear differential equations in a compact manner,
are often used in control applications. They have
been used in building modelling (Madsen and Holst,
1995) A state-space model consists of a set of two
matrix equations written in terms of three vectors: a
state vector X with n elements; an input vector u with
p elements; and an output vector y with ¢ elements.
These vectors are linked by four matrices, A (n x n),
B (nxp), C(g > n)and D (g x p):

X = Ax + Bu

4
y =Cx+Du @

Although the possibilities for choosing the state
variables are technically infinite, in RC thermal
networks it is convenient to use the temperatures of
the nodes with thermal capacitances. Such a state-
space formulation, equivalent to the well-known
finite difference method, facilitates the mathematical
treatment of the problem.

A third order model, such as the one in Figure 5, is
defined by three state variables. With this state-space
formulation, initial conditions can be easily set-up
since they are equal to the nodal temperatures at the
beginning of the simulation. The state, input and
output vectors are:

ext

T,
q T
x=|T |, u=| "], y{z} Q)
r 9 T,
q,

The matrices A and B can be found by writing the
energy balance differential equations for each node in
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terms of thermal conductance (U). For example,
considering the energy balance in node 1:

ar, 1

e =)0, (5 -1)] ©

By writing the energy balance for the all the nodes:

_ Ul,ext + U1,2 & 0
Cl Cl
U, Uu_+U,+U,, U,
S el BN €)
CZ CZ C2
: g U
L Cs Cs J
U _
1,ext O 0 O
Cl
U,.. 1 06 0.6
B=| — — — — ®)
CZ CZ CZ C2
04 04
0 0o — —
L C3 C} .

The matrices C and D depend on the outputs of
interest. In this case, the outputs are 7, and 75 (equal
to states 2 and 3), and there is no direct impact from
the input variables on the outputs.

010 0000
C= ; D= )
001 0000

For the general case of RC thermal networks whose
states are the temperatures of nodes with
capacitances, the matrix A is given by:

A=M_U (10)

where the matrix M, is given by:

G 0 0
0 C :

Mcap =l . 2 . (11
0 o C

n )

Capacitance matrix

A particularity of RC thermal networks is that all the
capacitances are connected to the ground (i.e., the
reference temperature, which is often 0 °C). As a
result, the capacitance matrix M, is a diagonal
matrix, since it only has non-zero elements in its
main diagonal, which also means that it is always
invertible. The inverse of a diagonal matrix is found
by simply replacing each of the elements in the main
diagonal by its reciprocal (C; by 1/C, etc.).

The matrix U is the well-known conductance matrix
(note: r is the number of temperature source nodes):

n+r T
- Ui,j Ul,2 Ul,n
J
n+r
U= Uy, _ZUZ,j Uy, (12)
J
71+V.
Un,l Un,2 _ZUn,j
L J _

Conductance matrix

The state matrix A defined in equation (10) has a
useful property for simulations: its main diagonal
defines the time constants associated with each
capacitance, and thus the critical time step of the
system. The elements of the main diagonal are:

n+r
_Z Ui,
F connected to this node
a. = = (13)
C C.

1 1

sum of the conductances

The critical time step is:

1
At, =min| — (14)
‘ai,i

The matrix B is given by:
B=M_S (15)

where the matrix S is a “source matrix”. Each
element s;,; describes the effect of a source j acting on
a node i. For a heat source, the element (i, j) of the
matrix is given by:

S = (16)

where a;; is the fraction of the source j absorbed by
node i. For a temperature source j linked to the node
i with a conductance, the element (i, ;) is given by:

5, =U; 17
The matrices C and D will be chosen depending on
which outputs the user is interested about.

f. Comparison and Uncertainty Estimation

Once the R and C values are determined, a statistical
comparison of the outputs of the model and the
detailed simulation is performed. Such a comparison
gives an idea of the simplified model uncertainty,
since a true uncertainty assessment implies a
comparison with the real building response.

g. Validation

Finally, the performance of the simplified model is
tested with a different data set. This can be done by
running an EnergyPlus simulation with a different
weather file, and comparing its results with those of
the simplified model.
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RESULTS

Table 1 shows the RC values providing the best
agreement with the results of an EnergyPlus
simulation (training data: Montreal weather file).

Table 1. Parameter values for simplified model.

Capacitances (kJ/K) Resistances (K/kKW)
C, 8.745x107 Riex 5.926x 10
G, 7.864x10° Ri,  5.743
C;  3.048 x 10* Ry5  0.468

Rye 1388

Valuable insight may be gained from these values.
The effective capacitance of node 2 is only 25% of
that of node 3, which indicates that the temperature
of central zone changes more slowly than that of the
perimetral zones. The resistance R, (infiltration +
windows) is also about one-quarter of the resistance
of the opaque parts of the building envelope.

The free floating responses (i.e., without heating) for
Top.per (12) of the EnergyPlus and RC models, using a
Montreal weather file, are shown below in Figure 6.
In general, there is good agreement between them.

MONTREAL

Operative temperature (°C)

20 L L L L L L L
10 12 14 16 18 20 22

Time since beginning of the year (days)

Figure 6. Free floating response (Montreal), average
of perimetral zones (EnergyPlus) and T, (RC).

Figure 7 compares the daily heating energy found by
EnergyPlus and the RC circuit for a few days in
January (Montréal weather file), with an operative
temperature set-point of 21 °C. It was found that the
error of daily heating needs has a mean value of
nearly 0%, and a root mean square error deviation
(RMSD) of 5%. This information could be used to
model the error as a random variable having a normal
probability distribution with 4 =~ 0 and ¢ = 5%. Error
bars for this uncertainty margin are also shown.

800 . . . : : :
MONTREAL

700 e+
= I RC
=
Z 600 T
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X
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£
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2
3 200
a

100
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10 12 14 16 18 20 22

Time since beginning of the year (days)

Figure 7. Daily heating energy with EnergyPlus and
simplified RC circuit, training data set (Montréal).

A validation exercise was carried out with a different
weather file (Ottawa, Canada). The free floating
responses in this case are shown in Figure 8.

T T T T

T T T
—RC OTTAWA
10} | m— 4 q

Operative Temperature (°C)

L L L

c c
10 12 14 16 18
Time since beginning of the year (days)

Figure 8. Free floating response (Ottawa), average
of perimetral zones (EnergyPlus) and T, (RC).

20 22

Figure 9 shows good agreement between the heating
energy needs predicted for the Ottawa weather, as
calculated with EnergyPlus and the RC circuit.

T T T T T T

800

OTTAWA

CJE+
= 700 T I RC
=
E 600)
=32
el
2500
=
o
@ 400
g
8 300
2
‘s 200
a

100
0
10 12 14 16 18 20 22

Time since beginning of the year (days)
Figure 9. Daily heating energy with EnergyPlus and
simplified RC circuit, validation data set (Ottawa).

FINAL REMARKS

This paper has presented an example of a control-
oriented simplified modeling strategy (COSMOS).
This strategy, developed in the context of a long-term
MPC research project, proposes: (i) using “grey-
box”, thermal network models; (ii) determining
equivalent (rather than strictly physical) parameters;
(iii) finding these parameters through an optimization
routine; (iv) using a standardized state-space
representation, as a link between building modelling
and control engineering; (v) estimating uncertainty.
This methodology may be easily implemented in
building simulation tools to automatically generate
simplified models. While analytical mathematical
order-reduction techniques may be used to derive
simpler models from complex networks, numerical
optimization suffices to accomplish this task.

The RC thermal circuit presented in this paper is
intended to illustrate the methodology. The layout of
the circuit is, of course, not fixed; the number of
nodes and their arrangement may vary depending on
the requirements of the control strategy and other
factors (e.g., time scale, energy storage device). The
use of simple, partially data-driven models does not
imply sacrificing insight: on the contrary, these
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models should be based on a sound understanding of
the physics of the problem being studied.

A low-order linear network in which each of the
states and parameters has a physical interpretation is
not an absolute requirement, but it does offer some
advantages. For example, having a small number of
physically-meaningful state variables facilitates the
task of setting-up the initial state vector (x,) at the
beginning of each prediction horizon, by making use
of sensor measurements.

Further research is needed on simplified models for
building control applications. Building simulation
tools can certainly play an essential role in this effort.
The potential for scalability of this method is worth
exploring: e.g., it may be used for load prediction of
building clusters or communities or for modelling
parts of a building (zonal models). Also, statistical
analysis of large databases of building simulation
models may allow the identification of archetypical
thermal networks, and determine correlations
between the building geometry and material
properties and the corresponding RC parameters.
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